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Abstract

We propose an efficient oblivious transfer in the random oracle model based on public key encryption
with pseudorandom public keys. The construction is as efficient as the state of art though it has a
significant advantage. It has a tight security reduction to the multi-user security of the underlying public
key encryption. In previous constructions, the security reduction has a multiplicative loss that amounts
in at least the amount of adversarial random oracle queries. When considering this loss for a secure
parameter choice, the underlying public key encryption or elliptic curve would require a significantly
higher security level which would decrease the overall efficiency.

Our OT construction can be instantiated from a wide range of assumptions such as DDH, LWE,
or Codes as well as many public key encryption schemes such as the NIST PQC finalists. Since tight
multi-user security is a very natural requirement which many public key encryption schemes suffice, many
public key encryption schemes can be straightforwardly plugged in our construction without the need of
reevaluating or adapting the parameter choice.

1 Introduction

An oblivious transfer (OT) [Rab81, EGL82] is an interactive protocol between two parties called a sender and
a receiver. At the end of the protocol, the sender outputs two messages m0, m1 while the receiver outputs
b,mb for a choice bit b. Security requires that the sender does not learn b and the receiver does not learn m1−b.
OT is a fundamental building block in cryptography [Kil88], particularly in secure multi-party computation
(MPC) [Yao82, Yao86, CvT95, IPS08, IKO+11, BL18, GS18], which allows mutually distrusting parties to
securely perform joint computations on their privately held data. MPC has a plethora of applications in
practice, for example, in securely training machine learning models (e.g. [MR18]), private set intersection
(e.g. [KKRT16, PRTY20]) etc. In fact, a significant body of practically efficient MPC protocols do rely
primarily on the primitive of OT (e.g. [NNOB12, KOS16]), which makes efficient secure OT an important
and very natural objective.

Within the last years, there has been significant progress in making OT more efficient. Chou and
Orlandi [CO15] proposed a very efficient OT in the random oracle model [BR93, CGH98] based on the DDH
assumption. It turned out, that it does not achieve UC security [GIR17, HL17], but only stand-alone security.
Masny and Rindal [MR19] proposed an OT from public key encryption (PKE) with pseudorandom public
keys that is as well very efficient but also UC secure and can be instantiated from a variety of assumptions
such as LWE or code based assumptions. The construction makes it very easy to plug in PKE schemes such
as the NIST PQC candidates [SAB+20, DKR+20, CDH+20, ABC+20] which is a significant advantage over
more tailored construction of OT based on DDH [CSW20], LWE [PVW08, BD18, BDK+20] or McEliece
[DvMN08, DNM12].

McQuoid, Rosulek and Roy [MRR20, MRR21] extended this approach and suggested a concept called
programmable once public functions (POPFs). This concept allows a more modular analysis of [MR19].
Intuitively, POPFs are based on random oracles (or ideal ciphers) and allow a receiver to freely chose one
public key while a second public key determined by the random oracle. This approach unfortunately also
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UC Loss Model Com(R) Com(S)
[CO15] 7 - ROM log |G| log |G|
[MR19] PKE A O(q) ROM 2|pk| 2|ct|
[CSW20] DDH O(q2) ROM,CRS 2 log |G| log |G|
[MRR20] PKE B O(q) ROM |ct|+ λ |pk|
[MRR21] PKE B O(q) Ideal Cipher |ct|+ λ |pk|
Ours PKE A O(1) ROM |pk|+ 2λ 2|ct|

Figure 1: We compare our construction with previous works. The depicted loss assumes tight multi-user
security of the underlying PKE. We emphasize that the listed works realize different OT functionalities and
therefore the comparison between the communication should be interpreted with caution. PKE A stands for
PKE with pseudorandom public keys and PKE B stands for PKE with uniform ciphertexts. ICM stands for
the Ideal Cipher model. q is the amount of adversarial hash evaluations.

has some drawbacks, namely the receiver could query the random oracle many times to find a POPF which
defines public keys that might be easier to break. Further, when proving security against a malicious receiver,
the simulation strategy using a known POPF causes a loss of at least q where q is the amount of adversarial
oracle queries.

The first drawback can be easily resolved by using a PKE that is tightly secure in the multi-user setting.
Bellare, Boldyreva and Micali [BBM00] showed that ElGamal is tightly secure even when multiple challenge
ciphertexts are given to the adversary. There are numerous works that focus on tight multi-user security
[H̊as88, HJ12, Zav12, CKMS16, GKP18] and it is a rather well understood area. The tightness requirement
does not seem to put significant restrictions on known PKEs. Tight multi-user security seems to be a very
natural property that a PKE should typically have since usually the security of all users and not just of a
single user needs to be considered. Non-tightness would demand an increase in the bit security level of the
PKE when used across many users which would render the PKE significantly less efficient.

The second issue cannot be resolved that easily and requires a more in-depth analysis of the OT con-
structions. Both Masny and Rindal [MR19] as well as McQuoid, Rosulek and Roy [MRR20, MRR21] use
guessing strategies that cause the loss. Therefore it seems hard to be resolved but it opens up the question
whether a similar construction could achieve tight security. In this paper, we answer the following question:

Can we construct efficient OT that is tightly secure in the QROM from public-key encryption?

1.1 Our Contribution

We propose a new construction of OT in the random oracle model which can be proven tightly secure based
on the multi-user security of the underlying PKE. We achieve this via a new construction of a programmable
once public function (POPF) [MRR20] which can be used to adapt previous constructions of OT such as
[MR19, MRR20, MRR21]. The proof requires a careful simulation of the random oracle and this is why we
do not follow the more modular approach using an POPF.

We use a mild notion of multi-user security which is weaker than the notion proposed in previous literature
such as [BBM00]. In our notion, we require that an adversary receives n user public keys and then decides
for which he wants to see a challenge ciphertext. The notion of [BBM00] allows an adversary to see challenge
ciphertext for all of the public keys. Nevertheless, there are many PKEs that even achieve the stronger notion
of [BBM00] with a tight security proof under the DDH or LWE [Reg05] assumption. We recap the most
basic PKEs and their tight reductions to DDH and LWE in Section 3. The results extend straightforwardly
to code based schemes, the ring or module LWE [LPR10, BGV12, LS15] setting or elliptic curves.

For our OT, we require a second property that is the pseudorandomness of the public keys. This require-
ment is the same as in [MR19] we the exception that it holds tightly based on the underlying assumption
even when n keys are seen. We recap this property as well in Section 3 for the PKEs of interest.

In Figure 1, we compare our result with previous works. Since the main difference of our construction to
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[MR19] is how the random oracle is used, the efficiency of our OT is very similar to [MR19]. On one hand, we
need to compute 3 additional hash evaluations. The hash evaluations are standard evaluations mapping onto
{0, 1}∗ and when using elliptic curves, not to curve points. On the other hand, we are actually, similar to
[MRR20] able to reduce the communication complexity on the receivers side from 2|pk| ([MRR20]) to |pk+2λ.
In particular when instantiating the OT with lattice or code based schemes [SAB+20, DKR+20, CDH+20,
ABC+20] which have rather long keys, this is a significant reduction. Even when instantiating the OT with
ElGamal encryption, we need to sample one random group element less which requires an exponentiation. In
the elliptic curve setting, our construction is compatible with the performance optimizations of [MRR21] and
would therefore be competitive with the currently fastest implementations of UC OT reported in [MRR21].
Further, our OT is based on a PKE with pseudorandom public keys which, unlike PKEs with uniform
ciphertexts, can be efficiently instantiated with post-quantum PKEs, e.g. from codes or lattices. We could
also use our techniques to construct an OT from a PKE with pseudorandom ciphertexts, though it is unclear
whether the tightness would still hold and it might require stronger assumptions such as the interactive DDH
assumption [MR19] or oracle assumptions [BCJ+19, MRR21].

As shown in Figure 1, our OT is currently the only OT among the most efficient OTs that is tightly
secure. The main challenge is typically security against a malicious receiver. Previous works suffer at least
a loss of O(q) where q is the amount of adversarial hash evaluations. For a conservative parameter choice,
previous works need to start with a significantly higher security level of the PKE or elliptic curve which
negatively impacts efficiency and communication complexity.

1.2 Technical Overview

We follow an approach by Masny and Rindal [MR19]. They construct a two round OT in which the receiver
starts by sending a message r0, r1 from this message the sender can derrive two public keys under which he
encrypts the two OT strings. The public keys are pk0 := r1 + H(r0) and pk1 := r0 + H(r1). When following
this approach, proving security against a malicious sender is typically easy since the random oracle can be
programmed such that the simulator knows the secret keys for both public keys which can then be used
to extract the malicious sender’s string. The more challening part is to prove security against a malicious
receiver R∗. Given that R∗ makes only two random oracle queries, r0 and r1, the simulator can observe the
first query, let it be rb. Then, when the second query is made, the simulator could pick a public key pk∗

of its choice and program the oracle H such that H(r1−b) := pk∗ − rb and thus pk1−b = pk∗. If R∗ learns
information about the OT string s1−b, he would then break the security of the PKE.

Unfortunately, when the malicious receiver makes many queries, it is not clear how to program H(r1−b)
since any of the q previous queries r̃1, . . . , r̃q could be the rb query. This would lead to the potential public
keys pk1−b,1 := r̃1 + H(r1−b), . . . , pk1−b,q := r̃q + H(r1−b). We could guess j ∈ [q] such that rb = r̃j but this
would cause a loss of q.

Before explaining our construction, we first take an intermediate step. The MR OT has similarities
with a sequential OR proof [RST01, AOS02]. Instead we could follow the parallel OR proof paradigm
[CDS94]. The public keys would be then derrived from a message r, c0, c1 and defined as pk0 := r + H(c0)
and pk1 := r + H(c1). This construction has similarities with the McQuoid, Rosulek and Roy OT [MRR20].

As an additional constraint, we ask that Ĥ(r) = c0 + c1, where Ĥ is a second random oracle. When proving

security against R∗, whenever R∗ makes a query to Ĥ, the simulator samples a random ĉ and programs
H(ĉ + cj) = pk∗j − r for any previous query cj to H for a public key of its choice. Since ĉ is uniform, it is
very unlikely that H has been programmed on this input for a previous query. Now we could just rely on
the multi-user security of the PKE rather than trying to guess which of the previous queries corresponds to
rb. Nevertheless, R∗ could first query Ĥ for r and then query H for c0, c1 such that Ĥ(r) = c0 + c1. This
would cause an issue in the programming strategy which assumes that the adversary queries first c0 or c1 to
H. Further, this strategy does not seem to help R∗ since by using a guessing strategy, we could show that
by the security of the PKE, R∗ cannot learn any of the OT strings. However, it seems that we cannot show
this via a tight reduction.

We resolve the issue via the following approach. We let the receiver send (r, c0, c1) and the public keys are
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defined as pk0 := r + Ĥ(ĉ0) and pk1 := r + Ĥ(ĉ1), where ĉ0 := c1 + H(r, c0) and ĉ1 := c0 + H(r, c1). ĉ0 and ĉ1
could be seen as the r0, r1 values of the MR OT. But rather than using them directly, we apply an additional
random oracle on them as “correlation breaker”. A PKE scheme is typically not tightly secure in a setting
where an adversary A can first suggest q shifts r̃1, . . . , r̃q, then receives public key pk and finally tries to
break IND-CPA security under public key pk− r̃j where j ∈ [q] is chosen by A. Though a correlation robust

hash function Ĥ [IKNP03] is tailored to such a setting and maps all inputs pk − r1, . . . , pk − rq to strings
that do not collide as long as pk is uniform and independent of r̃1, . . . r̃q. In our setting, we need something
stronger than correlation robustness since we also need programmability such that we can program these
disjunct strings to different public keys. Fortunately, a random oracle provides both properties such that
for any choice of r, c0, c1 among the random oracle queries of R∗, at least one of the public keys pk0 and
pk0 will correspond to a programmed key chosen by the simulator. When q is the total amount of random
oracle queries, there are at most q2 choices for r, c0, c1 among the queries. This is due to the fact, that for
any b ∈ {0, 1}, cb is uniquely defined by r and c1−b. Therefore, there will be at most q2 choices of public
keys pk0, pk1 and hence the multi-user security of PKE for q2 user is sufficient to prove security against a
malicious receiver.

For the proof, it would sufficient to just hash r0, r1 of the MR OT, though in the actual protocol, we
need to allow the receiver to control one of the public keys. For this reason we introduce r to the protocol.
Interestingly, our protocol could be seen as a combination of sequential and parallel OR proof techniques.

2 Preliminaries

Notation. For n ∈ N, we use [n] to denote the set {1, . . . , n}. We use λ to denote the security parameter.
And x← X , x← X to sample x from a distribution X or uniformly random from a set X.

Let Π be a protocol between two parties S and R. For two (interactive) algorithms S ′,R′ that do not
necessarily follow the protocol description of Π, we use [S ′,R′]Π to denote the interaction between S ′ and R′
in protocol Π, where S ′ takes the role of S and R′ the role of R. For an environment D, we use D([S ′,R′]Π)
to denote an interaction of D with S ′,R′ who interact in Π. Here, we follow the simple UC framework of
[CCL15].

For a cyclic group G of order p ∈ N with generator g, we use J1K to denote g and for a, b ∈ N, JaK+ bJ1K =
Ja + bK. For a, b ∈ Zηq , we use 〈a, b〉 to denote the inner product between a and b. For an oracle O and an

algorithm A, we use AO to denote A when A has query access to O.

Cryptographic Assumptions. We recap the DDH and LWE problems below. Since we consider the UC
setting, we need to consider non-uniform algorithms which receive an auxiliary input.

Definition 2.1 (Decisional Diffie-Hellman (DDH)). A ppt algorithm A solves the decisional Diffie-Hellman
(DDH) problem for a group G of order p ∈ N with generator J1K with probability ε if for any polynomial
auxiliary input z,

|Pr[A(z, J1K, JaK, JbK, JabK) = 1]− Pr[A(z, J1K, JaK, JbK, JcK) = 1]| ≥ ε,

where a, b, c← Zp.

Definition 2.2 (Learning with Errors (LWE)). A ppt algorithm A solves the Learning with Errors (LWE)
problem for parameters q, η ∈ N and noise distribution X with probability ε if for any polynomial auxiliary
input z

|Pr[AOLWE(z) = 1]− Pr[AOU(z) = 1]| ≥ ε,

where OLWE is a oracle that outputs samples of the form a, 〈a, s〉+ e with a ← Zηq , e ← X and each sample
uses the same secret s← Zηq . OU is the oracle that outputs a, u with a← Zηq , u← Zq.

4



Public Key Encryption. We define public key encryption and its multi-user security below. We empha-
size that we consider a setting with only a single challenge ciphertext which is a weaker security notion than
the commonly used multi-user security setting in which an adversary receives a challenge ciphertext for each
public key.

Definition 2.3 (Public Key Encryption). A public key encryption (PKE) is a triplet of algorithms (Gen,Enc,Dec)
and a message space M with the following syntax.

Gen: Takes as input 1λ and outputs a key pair (sk, pk).

Enc: Takes as input pk and a message m ∈ M and outputs a ciphertext ct.

Dec: Takes as input sk and a ciphertext ct and outputs a message m.

We require correctness and M-IND-CPA security.

Correctness: For any m ∈ M
Pr[Dec(sk,Enc(pk,m)) = m] ≥ 1− negl,

where (sk, pk)← Gen(1λ).

n-Multi-User IND-CPA (M-IND-CPA): For any ppt adversay A := (A1,A2) and any polynomial auxiliary
input z

|Pr[A2(st, ct∗0) = 1]− Pr[A2(st, ct∗1) = 1]| ≤ negl,

where for all i ∈ [n], (ski, pki) ← Gen(1λ), (st, i∗,m0,m1) ← A1(z, pk1, . . . , pkn) and for all b ∈ {0, 1}
ct∗b ← Enc(pki∗ ,mb).

In addition to the multi-user IND-CPA security, we also need that public keys are indistinguishable from
uniform in the multi-user setting.

Definition 2.4 (PKE with Pseudorandom Public Keys). For n ∈ N, we call a PKE scheme n-multi-user
public key indistinguishable (M-IND-PK) over group G if for any ppt A and polynomial auxiliary input z

|Pr[A(z, pk1, . . . , pkn) = 1]− Pr[A(z, u1, . . . , un) = 1]| ≤ negl,

where for all i ∈ [n], (ski, pki)← Gen(1λ) and ui ← G.

Oblivious Transfer.

Definition 2.5 (Ideal Oblivious Transfer Functionality). An ideal OT functionality FOT interacts with two
ppt parties S and R as follows. FOT takes s0, s1 from S. FOT takes b from R and returns sb.

Definition 2.6 (Oblivious Transfer). We call a protocol Π between two ppt parties, a sender S and a receiver
R, oblivious transfer (OT) if at the end of the protocol they have established a correlation in which S holds
strings (s0, s1) and R holds (b, sb). For security, we require two properties with respect to a functionality
FOT.

Security Against a Malicious Sender: For any ppt adversary A, there exists a ppt adversary A’ such
that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, [A,R]Π) = 1]− Pr[D(z, [A′,FOT]Π) = 1]| = negl,

where all algorithms receive input 1λ. R additionally receives input b.

Security Against a Malicious Receiver: For any ppt adversary A, there exists a ppt adversary A’ such
that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, [S,A]Π) = 1]− Pr[D(z, [FOT,A
′]Π) = 1]| = negl,

where all algorithms receive input 1λ.
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3 Public Key Encryption in the Multi User Setting

We use this section to recap commonly known public key encryption schemes that are tightly secure in
the multi-user setting. As a proof of concept, we consider ElGamal, Regev encryption and dual Regev e
ncryption.

Definition 3.1 (ElGamal). The ElGamal PKE over group G with order p ∈ N and generator J1K with
message space M := G has the following syntax.

Gen(J1K)→ (pk, sk): Sample x← Zp and output pk := JxK and sk := x.

Enc(J1K, pk,m)→ (ct1, ct2): Sample r ← Zp and output ct1 := JrK, ct2 := rpk + m.

Dec(J1K, sk, ct)→ m: Output m := ct2 − sk · ct1.

It is straightforward to see that ElGamal is perfectly correct. Let us recap that it is tightly secure in the
multi-user setting. Due to the fact that the public keys are uniform over G, ElGamal is perfectly n-M-IND-PK
secure.

Lemma 3.1. Let G be of prime order and DDH be ε hard over G and n polynomial, then ElGamal over G
is 2ε n-M-IND-CPA secure.

Proof. The proof follows straightforwardly from the random selfreducibility of the DDH assumption. The
reduction for parameter d ∈ {0, 1} receives a DDH challenge JaK, JbK, JcK and samples for all i ∈ [n] ri ← Zp.
It forwards z and pk1 := r1JaK, . . . , pkn := rnJaK to A that tries to break ElGamal. When A send i∗,m0,m1,
the reduction sends ct := (JbK, riJcK ·md). The reduction outputs the output of A.

When JcK = JabK, ct is an encryption of md, i.e. ct := ctd, while when c is uniform, ct encrypts a uniform
message, i.e. ct := ctU. If A distinguishes ctd from ctU with probability ε′, the reduction solves DDH with
probability ε′. Assuming that DDH is ε hard, A cannot distinguish ctd from ctU with ε′ > ε for any d ∈ {0, 1}
and it cannot distinguish ct0 from ct1 with ε′ > 2ε.

Definition 3.2 (Regev Encryption [Reg05]). Regev encryption with the parameters q, η,m ∈ N with m ≥
η log q and message space {0, 1}m has the following syntax.

Gen(1λ)→ (pk, sk): Sample s← Zηq , A← Zm×ηq , e← Xm and output pk := (A,As+ e) and sk := s.

Enc(pk,m)→ (ct1, ct2): Sample R← Zm×mq and output ct1 := Rpk1, ct2 := Rpk2 + mb q2e.

Dec(sk, ct)→ m: Compute m̂ := ct2 − ct1 · sk and output m := |b 2
q m̂e|.

For a proper choice of q,m and X , Regev encryption will be correct.

Lemma 3.2. Let LWE be ε hard and n polynomial, then Regev encryption is 2ε n-M-IND-CPA and ε n-
M-IND-PK secure.

Proof. We first show M-IND-CPA security. The reduction for parameter d ∈ {0, 1} receives access to an oracle
O that it uses to generate Ai, bi for all i ∈ [n]. It sets pki := (Ai, bi+Aisi) for si ← Zηq and forwards them to
A. After A sends (i∗,m0,m1), the reduction samples R← Zm×mq and sends ct := (RAi, R(bi+Aisi)+mb q2e).
The reduction outputs the output of A.

When O = OLWE, ct is an encryption of md, i.e. ct := ctd, while when O = OU, ct is by the leftover hash
lemma uniform, i.e. ct := ctU. If A distinguishes ctd from ctU with probability ε′, the reduction solves LWE
with probability ε′. Assuming that LWE is ε hard, A cannot distinguish ctd from ctU with ε′ > ε for any
d ∈ {0, 1} and it cannot distinguish ct0 from ct1 with ε′ > 2ε.

Let us now consider the M-IND-PK security. The reduction defines pki as previously. When O = OLWE,
then pki is a proper public key and when O = OU, then the public key is uniform. If A can distinguish them,
it solves LWE.
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Definition 3.3 (Dual Regev Encryption [GPV08]). Dual Regev encryption with the parameters q, η,m ∈ N
with m ≥ η log q and message space {0, 1}m has the following syntax.

Gen(1λ)→ (pk, sk): Sample R← Zm×mq , A← Zm×ηq and output pk := (A,RA) and sk := R.

Enc(pk,m)→ (ct1, ct2): Sample s ← Znq , e1, e2 ← Xm, R′ ← Zm×mq and outputs ct1 := pk1 · s + e1, ct2 :=
pk2 · s+R′e2 + mb q2e.

Dec(sk, ct)→ m: Compute m̂ := ct2 − sk · ct1 and output m := |b 2
q m̂e|.

Correctness follows in the same way as in Regev encryption. By the leftover hash lemma, the public key
is statistically indistinguishable from uniform and therefore dual Regev encryption is M-IND-PK secure.

Lemma 3.3. Let LWE be ε hard and n polynomial, then dual Regev encryption is 2ε n-M-IND-CPA secure.

Proof. The reduction for parameter d ∈ {0, 1} receives access to an oracle O that it uses to generate Ai, bi
for all i ∈ [n]. It sets pki := (Ai, RiAi) for Ri ← Zm×mq and forwards them to A. After A sends (i∗,m0,m1),
the reduction sends ct := (bi, Ribi + mb q2e). The reduction outputs the output of A.

When O = OLWE, ct is an encryption of md, i.e. ct := ctd, while when O = OU, ct is by the leftover hash
lemma (with leakage Re2) uniform, i.e. ct := ctU. If A distinguishes ctd from ctU with probability ε′, the
reduction solves LWE with probability ε′. Assuming that LWE is ε hard, A cannot distinguish ctd from ctU
with ε′ > ε for any d ∈ {0, 1} and it cannot distinguish ct0 from ct1 with ε′ > 2ε.

4 Oblivious Transfer from PKE

Theorem 4.1. Let PKE be a M-IND-CPA and M-IND-PK secure and correct. Then Protocol 2 is a UC
secure OT in the ROM.

Proof. Given the correctness of PKE, an honest sender and receiver will establish correlation (s0, s1), (b, sb)
with overwhelming probability.

We now focus on security against a malicious sender.

Claim 4.1. Let PKE be εu 1-M-IND-PK secure. Then, for any ppt adversary A, there exists a ppt adversary
A’ such that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, [A,R]Π) = 1]− Pr[D(z, [A′,FOT]Π) = 1]| ≤ εu,

where all algorithms receive input 1λ. R additionally receives input b.

Proof. We construct a receiver R′ follows the description of R by sampling (pkb, skb) ← Gen(1λ), ĉb ←
{0, 1}λ, cb ← {0, 1}λ, computing r := pkb − Ĥb(ĉb), c1−b := ĉb ⊕ H(r, cb). Unlike R, R′ computes ĉ1−b :=

cb ⊕ H1−b(r, c1−b), samples (pk1−b, sk1−b)← Gen(1λ) and programs Ĥ1−b(ĉ1−b) := pk1−b − r. Otherwise, R′
follows the description of R.

Notice that in case of R, r+ Ĥ1−b(ĉ1−b) is uniform while in case of R′, it has the distribution of a public
key generated by Gen. If D can distinguish [A,R′] from [A,R], then D can be used to break the 1-M-IND-PK
security of PKE with probability εu as follows. The reduction receives a 1-M-IND-PK challenge pk and sets
pk1−b := pk. When pk is uniform, it simulates R and otherwise R′. Therefore,

|Pr[D(z, [A,R]Π) = 1]− Pr[D(z, [A,R′]Π) = 1]| ≤ εu.

Based on R′, we can construct an adversary A′ which interacts with A, relays all interaction between A
and D and needs to submit s0 and s1 to FOT. A′ follows the process of R′ when constructing r, c0, c1 that
defines pk0 and pk1. As R′, A′ knows both, sk0 and sk1 which A′ uses to decrypt ct0 and ct1 to obtain s0

and s1. Since, A′ follows the description of R′, it leads to the same interaction between A and D. Therefore

Pr[D(z, [A,R′]Π) = 1] = Pr[D(z, [A′,FOT]Π) = 1],

which concludes the proof of the claim.
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Protocol 2

Primitives:

• PKE scheme (Gen,Enc,Dec) with pseudorandom public keys in G.

• Random oracles

– H0,H1 : G× {0, 1}λ → {0, 1}λ.

– Ĥ0, Ĥ1 : {0, 1}λ → G.

Common input: 1λ.

Sender S input: s0, s1.

Receiver R input: b ∈ {0, 1}.

1. R samples (pkb, skb)← Gen(1λ), ĉb ← {0, 1}λ, cb ← {0, 1}λ, computes

• r := pkb − Ĥb(ĉb)

• c1−b := ĉb ⊕ Hb(r, cb)

and sends (r, c0, c1).

2. S computes

• ĉ0 := c1 ⊕ H0(r, c0), ĉ1 := c0 ⊕ H1(r, c1),

• pk0 := r + Ĥ0(ĉ0), pk1 := r + Ĥ1(ĉ1),

• ct0 := Enc (pk0, s0) , ct1 := Enc (pk1, s1),

and sends (ct0, ct1).

3. R computes sb := Dec (skb, ctb).

Figure 2: Oblivious Transfer in the Random Oracle Model. (+,−) are used to denote the operations in G.
⊕ is the xor operation over {0, 1}∗.

We conclude the theorem with the following claim that establishes security against a malicious receiver.

Claim 4.2. Let PKE be εu q2-M-IND-PK and εt q
2-M-IND-CPA secure. Then, for any ppt adversary A

making at most q random oracle queries to H0, H1, Ĥ0 and Ĥ1 combined, there exists a ppt adversary A’
such that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, [S,A]Π) = 1]− Pr[D(z, [FOT,A
′]Π) = 1]| ≤ εu + εt +

q2

2λ
,

where all algorithms receive input 1λ.

Proof. For simplicity, we assume that when A sends r, c0, c1, it has queried the random oracles for H0(r, c0),

H1(r, c1), Ĥ0(ĉ0) and Ĥ1(ĉ1). We can assume this without loss of generality by making at most 4 additional
queries and setting the amount of queries to q̂ = q+ 4. Since this is not significant for our overall bound, we
identify q̂ with q in the following. We also assume without loss of generality that A queries an oracle only
once per input.

We define three intermediate algorithms S1, S2, S3 playing the role of sender S. S1 is identical to S
except that it simulates random oracles H0,H1 as follows. For all i ∈ [q] and j ∈ [q], it samples pki,j ← G.
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Whenever A makes a query ri, ci to Hd for i ∈ [q] and d ∈ {0, 1}, S1 samples Hd(ri, ci,d)← {0, 1}λ and does
the following for any j ∈ [q] with j < i and the jth query is a query rj , cj,1−d to H1−d with rj = ri.

1. Compute ĉi,j,d := cj,1−d ⊕ Hd(ri, ci,d).

2. If Ĥd(ĉi,j,d) is defined (through programming or a query), abort. Otherwise, program Ĥd(ĉi,j,d) :=
pki,j − ri.

Afterwards, S1 answers the query with Hd(ri, ci,d).
When A sends r, c0, c1, S1 computes pk0, pk1 in the same way as S. S1 defines b∗ such that pk1−b∗ = pki,j

for a i ∈ [q] and j ∈ [q]. If no such b∗, i, j exists, S1 aborts. Otherwise, it conludes the protocol according to
the description of S.

Let us now consider whether an environment D can distinguish [A,S] from [A,S1]. Since pki,j are uniform

in G, the output distribution of Ĥd, in particular for every point Ĥd(ĉi,j,d) := pki,j − ri is uniform over G, in
both settings. Other than that, S1 differs from S by two abort conditions - one during queries to Hd and
one after seeing (r, c0, c1). Let us assume that S1 aborts during a query to Hd. This implies that either A

has queried Ĥd for ĉi,j,d = cj,1−d ⊕Hd(ri, ci,d) for an j ∈ [q] or there exists a j ∈ [q] and a j′ ∈ [q] \ {j} with
cj,1−d ⊕ Hd(ri, ci,d) = cj′,1−d ⊕ Hd(ri, ci,d). In the former case, A would predict Hd(ri, ci,d) = cj,1−d ⊕ ĉi,j,d
which happens for each query with probability at most q

2λ . In the latter case, cj,1−d = cj′,1−d and thus A
would make the same query twice which does not happen.

The second abort condition never triggers for the following reason. Since A sends r, c0, c1, he will query
r, c0 to H0 and r, c1 to H1. Let b∗ ∈ {0, 1} such that A makes query r, cb∗ before r, c1−b∗ . When A makes

query c1−b∗ , cb∗ will therefore be defined and S1 will program Ĥ1−b∗(cb∗ ⊕Hd(r, c1−b∗)) = pki,j − r for some
i, j ∈ [q]. By the definition of pk1−b∗ , pk1−b∗ = pki,j . Thus, we obtain the bound

|Pr[D(z, [S,A]Π) = 1]− Pr[D(z, [S1,A]Π) = 1]| ≤ q2

2λ
.

S2 is identical to S1 except that it samples (pki,j , ski,j) ← Gen(1λ) for any i, j ∈ [q]. If there is an
environment D that can distinguish [A,S2] from [A,S1], then we can break the q2-M-IND-PK security or

PKE as follows. The reduction receives q2 challenge public keys p̂ki,j for i, j ∈ [q]. Instead of sampling pki,j ,

it sets pki,j := p̂ki,j .
When the challenge public keys are uniform, the reduction simulates S1 and otherwise (when the challenge

public keys are distributed according to Gen) S2. Therefore,

|Pr[D(z, [S1,A]Π) = 1]− Pr[D(z, [S2,A]Π) = 1]| ≤ εu.

Our next intermediate sender S3 follows the description of S2 except that after receiving r, c0, c1 from
A, it defines ct1−b∗ := Enc(pk1−b∗ , 0). If there is an environment D that can distinguish [A,S2] from [A,S3],
we can break the q2-M-IND-CPA security of PKE as follows. The reduction receives q2 challenge public keys

p̂ki,j for i, j ∈ [q]. As previously, it sets pki,j := p̂ki,j . It then follows the description of S2 until it defines b∗

and can compute pk1−b∗ = pki,j for some i, j ∈ [q]. The reduction sends (i∗ = (i, j),m0 = s1−b∗ ,m1 = 0) to
the M-IND-CPA challenger and receives back ct∗. It then sets ct1−b∗ := ct∗. When ct∗ encrypts s1−b∗ , the
reduction simulates S2 and otherwise S3. Therefore,

|Pr[D(z, [S,A]Π) = 1]− Pr[D(z, [S1,A]Π) = 1]| ≤ εt.

Based on S3, we can define A′ which interacts with A, relays all interaction between A and D and submits
b∗ to FOT and then receives sb∗ which is used to generate ctb∗ . Since A′ follows the description of S3, it leads
to the same interaction between A and D. Therefore, we can conclude the claim with

Pr[D(z, [S3,A]Π) = 1] = Pr[D(z, [FOT,A
′]Π) = 1].
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